

94 Digital Fundamentals

4.8 THE FIFO

The memory devices discussed thus far are essentially linear arrays of bits surrounded by a minimal
quantity of interface logic to move bits between the port(s) and the array.

First-in-first-out

(FIFO)
memories are special-purpose devices that implement a basic queue structure that has broad applica-
tion in computer and communications architecture. Unlike other memory devices, a typical FIFO
has two unidirectional ports without address inputs: one for writing and another for reading. As the
name implies, the first data written is the first read, and the last data written is the last read. A FIFO
is not a random access memory but a sequential access memory. Therefore, unlike a conventional
memory, once a data element has been read once, it cannot be read again, because the next read will
return the next data element written to the FIFO. By their nature, FIFOs are subject to

overflow

and

underflow

conditions. Their finite size, often referred to as

depth

, means that they can fill up if reads
do not occur to empty data that has already been written. An overflow occurs when an attempt is
made to write new data to a full FIFO. Similarly, an empty FIFO has no data to provide on a read re-
quest, which results in an underflow.

A FIFO is created by surrounding a dual-port memory array—generally SRAM, but DRAM
could be made to work as well for certain applications—with a write pointer, a read pointer, and con-
trol logic as shown in Fig. 4.18.

Dual-Port Memory

CPU A

Message Bin A

Message Bin B

CPU B

Interrupt
Logic

Interrupt
Logic

"Message Ready"

FIGURE 4.17 Dual microprocessor message passing architecture.

Dual-Port Memory Array

Write
Pointer

Read
Pointer

Comparison
Logic

Write
Control

Interface

Full

Read
Control

Interface

Empty

Write Data

Write Enable

 Full

Read Data

Read Enable

Empty

write data read data

write address read address

FIGURE 4.18 Basic FIFO architecture.

-Balch.book Page 94 Thursday, May 15, 2003 3:46 PM

Memory 95

A FIFO is not addressed in a linear fashion; rather, it is made to form a continuous ring of mem-
ory that is addressed by the two internal pointers. The fullness of the FIFO is determined not by the
absolute values of the pointers but by their relative values. An empty FIFO begins with its read and
write pointers set to the same value. As entries are written, the write pointer increments. As entries
are read, the read pointer increments as well. If the read pointer ever catches up to the write pointer
such that the two match, the FIFO is empty again. If the read pointer fails to advance, the write
pointer will eventually wrap around the end of the memory array and become equal to the read
pointer. At this point, the FIFO is full and cannot accept any more data until reading resumes. Full
and empty flags are generated by the FIFO to provide status to the writing and reading logic. Some
FIFOs contain more detailed fullness status, such as signals that represent programmable fullness
thresholds.

The interfaces of a FIFO can be asynchronous (no clock) or synchronous (with a clock). If syn-
chronous, the two ports can be designed to operate with a common clock or different clocks. Al-
though older asynchronous FIFOs are still manufactured, synchronous FIFOs are now more
common. Synchronous FIFOs have the advantage of improved interface timing, because flops
placed at a device’s inputs and outputs reduce timing requirements to the familiar setup, hold, and
clock-to-out specifications. Without such a registered interface, timing specifications become a func-
tion of the device’s internal logic paths.

One common role that a FIFO fills is in clock domain crossing. In such an application, there is a
need to communicate a series of data values from a block of logic operating on one clock to another
block operating on a different clock. Exchanging data between clock domains requires special atten-
tion, because there is normally no way to perform a conventional timing analysis across two differ-
ent clocks to guarantee adequate setup and hold times at the destination flops. Either an
asynchronous FIFO or a dual-clock synchronous FIFO can be used to solve this problem, as shown
in Fig. 4.19.

The dual-port memory at the heart of the FIFO is an asynchronous element that can be accessed
by the logic operating in either clock domain. A dual-clock synchronous FIFO is designed to handle
arbitrary differences in the clocks between the two halves of the device. When one or more bytes are
written on clock A, the write-pointer information is carried safely across to the clock B domain
within the FIFO via inter-clock domain synchronization logic. This enables the read-control inter-
face to determine that there is data waiting to be read. Logic on clock B can read this data long after
it has been safely written into the memory array and allowed to settle to a stable state.

Another common application for a FIFO is rate matching where a particular data source is bursty
and the data consumer accepts data at a more regular rate. One example is a situation where a se-
quence of data is stored in DRAM and needs to be read out and sent over a communications inter-
face one byte at a time. The DRAM is shared with a CPU that competes with the communications
interface for memory bandwidth. It is known that DRAMs are most efficient when operated in a
page-mode burst. Therefore, rather than perform a complete read-transaction each time a single byte

Dual-Port
Memory

Array
Write

Control

Clock A

Write Data

Write Enable

 Full

Read Data

Read Enable

Empty

Read
Control

Clock B

Write
Logic

Clock A

Read
Logic

Clock Binter-clock domain
synchronization

signals

Clock BClock A

FIGURE 4.19 Clock domain crossing with synchronous FIFO.

-Balch.book Page 95 Thursday, May 15, 2003 3:46 PM

